A theorem on convergence of entropy for small distortion

LDR 02302cam a2200445Ii 4500
001 102856271
003 MiAaHDL
005 20230928000000.0
006 m d
007 cr bn ---auaua
008 090505e197005 maua bt f000 0 eng d
019 ‡a51981593
035 ‡a(MiU)99187539170106381
035 ‡asdr-miu.99187539170106381
035 ‡a(OCoLC)320247644
035 ‡a(GWLA)gwla ocn320247644
040 ‡aLHL ‡beng ‡cLHL ‡dFUG ‡dOCLCF ‡dOCLCQ ‡dCOD ‡dTRAAL
049 ‡aMAIN
086 0 ‡aD 301.45/40:418
088 ‡aAD 0709357
088 ‡aAFCRL 70-274
100 1 ‡aPierce, John N., ‡eauthor.
245 1 2 ‡aA theorem on convergence of entropy for small distortion / ‡cJohn N. Pierce.
264 1 ‡aL.G. Hansom Field, Bedford, Massachusetts : ‡bAir Force Cambridge Research Laboratories, Office of Aerospace Research, United States Air Force, ‡c1970.
300 ‡av, 17 pages : ‡billustrations ; ‡c28 cm.
336 ‡atext ‡btxt ‡2rdacontent
337 ‡aunmediated ‡bn ‡2rdamedia
338 ‡avolume ‡bnc ‡2rdacarrier
490 0 ‡aPhysical Sciences Research Papers ; ‡vNo. 418
490 0 ‡aAFCRL ; ‡v70-274
500 ‡a"Data Sciences Laboratory Project 5628."
500 ‡a"AD0709357 (from http://www.dtic.mil)."
500 ‡a"May 1970."
504 ‡aIncludes bibliographical references (page 17).
520 ‡aLet X be a random variable with an absolutely continuous distribution function, and (Uk) be a sequence of random variables, independent of X, whose r-th mean converges to zero. Then it is shown that the existence of the R-th mean of X, for some positive R, is sufficient to guarantee the convergence of the entropy of X+(U sub k) to that of X. This theorem is useful in determining asymptotic approximations to the rate-distortion function and is thus pertinent to the problem of establishing the bit rate necessary to communicate at a specified small distortion. (Author).
538 ‡aMode of access: Internet.
650 0 ‡aNumerical integration.
650 0 ‡aEntropy (Information theory)
710 2 ‡aAir Force Cambridge Research Laboratories (U.S.)
730 0 ‡aTechnical Report Archive & Image Library (TRAIL)
899 ‡a39015095296581
CID ‡a102856271
DAT 0 ‡a20210401082058.0 ‡b20230928000000.0
DAT 1 ‡a20230928062550.0 ‡b2024-06-23T17:38:21Z
CAT ‡aSDR-MIU ‡cmiu ‡dALMA ‡lprepare.pl-004-008
FMT ‡aBK
HOL ‡0sdr-miu.99187539170106381 ‡aMiU ‡bSDR ‡cGWLA ‡pmdp.39015095296581 ‡sMIU ‡199187539170106381
974 ‡bMIU ‡cGWLA ‡d20240623 ‡sgoogle ‡umdp.39015095296581 ‡y1970 ‡rpd ‡qbib ‡tUS fed doc