Paving the Path for Heterogeneous Memory Adoption in Production Systems
[electronic resource].
Description
- Language(s)
-
English
- Published
-
2017.
- Summary
-
has been to map datasets in memory, we make a case for a two-tiered memory system where cheaper (per bit) memories, such as Intel/Microns 3D XPoint, will be deployed alongside DRAM. We present Thermostat, an application-transparent huge-page-aware software mechanism to place pages in a dual-technology hybrid memory system while achieving both the cost advantages of two-tiered memory and performance advantages of transparent huge pages. With Thermostat’s capability to control the application slowdown on a per application basis, cloud providers can realize cost savings from upcoming cheaper memory technologies by shifting infrequently accessed cold data to slow memory, while satisfying throughput demand of the customers.
cheaper but slower memory technologies alongside DRAMs to reduce cost of memory in data-centers. First, we show that operating systems do not have sufficient information to optimally manage pages in bandwidth-asymmetric systems and thus fail to maximize bandwidth to massively-threaded GPU applications sacrificing GPU throughput. We present BW-AWARE placement/migration policies to support OS to make optimal data management decisions. Second, we present a CPU-GPU cache coherence design where CPU and GPU need not implement same cache coherence protocol but provide cache-coherent memory interface to the programmer. Our proposal is first practical approach to provide a unified, coherent CPU–GPU address space without requiring hardware cache coherence, with a potential to enable an explosion in algorithms that leverage tightly coupled CPU–GPU coordination. Finally, to reduce the cost of memory in cloud platforms where the trend
Systems from smartphones to data-centers to supercomputers are increasingly heterogeneous, comprising various memory technologies and core types. Heterogeneous memory systems provide an opportunity to suitably match varying memory access pat- terns in applications, reducing CPU time thus increasing performance per dollar resulting in aggregate savings of millions of dollars in large-scale systems. However, with increased provisioning of main memory capacity per machine and differences in memory characteristics (for example, bandwidth, latency, cost, and density), memory management in such heterogeneous memory systems poses multi-fold challenges on system programmability and design. In this thesis, we tackle memory management of two heterogeneous memory systems: (a) CPU-GPU systems with a unified virtual address space, and (b) Cloud computing platforms that can deploy
- Locate a Print Version
-
Find in a library service is not available from this catalog. Search Worldcat
Viewability