Proportional formulae, bi-complex and tri-complex, or A system, algebraically derived from the nature of proportionals, for the facilitation of that process in arithmetic commonly called the rule of three

LDR 01148nam a22002417i 4500
001 011618012
003 MiAaHDL
005 20240323000000.0
006 m d
007 cr bn ---auaua
008 010328s1837 mau |||||||eng|d
035 ‡asdr-hvd.990086014550203941
035 ‡a(MH)008601455HVD01-Aleph
035 ‡z(MH)Aleph008601455
035 ‡a(OCoLC)46684846
050 4 ‡aQA142 ‡b.Z9 1837
100 1 ‡aLee, John
245 1 0 ‡aProportional formulae, bi-complex and tri-complex, or A system, algebraically derived from the nature of proportionals, for the facilitation of that process in arithmetic commonly called the rule of three / ‡cby John Lee.
246 3 0 ‡aSystem algebraically derived from the nature of proportionals
246 3 0 ‡aProportional formulæ, bi-complex and tri-complex
260 ‡aCambridge, Mass. : ‡bMetcalf, Torry and Ballou, ‡c1837.
300 ‡a24 p. ; ‡c18 cm.
538 ‡aMode of access: Internet.
650 0 ‡aRatio and proportion.
650 0 ‡aNautical astronomy.
776 0 8 ‡iOnline version: ‡aLee, John, of Cambridge, Mass. ‡tProportional formulæ, bi-complex and tri-complex; or, A system algebraically derived from the nature of proportionals. ‡dCambridge, Metcalf, Torry, and Ballou, 1837 ‡w(OCoLC)794647095
CID ‡a011618012
DAT 0 ‡a20020606104010.5 ‡b20240323000000.0
DAT 1 ‡a20240324060506.0 ‡b2024-03-24T13:17:16Z
DAT 2 ‡a2023-03-24T17:30:03Z
CAT ‡aSDR-HVD ‡chvd ‡dALMA ‡lprepare.pl-004-008
FMT ‡aBK
HOL ‡0sdr-hvd.990086014550203941 ‡ahvd ‡bSDR ‡cHVD ‡f008601455 ‡phvd.hnmd1e ‡sHVD ‡1990086014550203941
974 ‡bHVD ‡cHVD ‡d20240324 ‡sgoogle ‡uhvd.hnmd1e ‡y1837 ‡rpd ‡qbib ‡tUS bib date1 < 1930