Nonlinear functional analysis

LDR 01448cam a2200373 4500
001 000620084
003 MiAaHDL
005 20240626000000.0
006 m d
007 cr bn ---auaua
008 690630s1969 nyu b 001 0 eng
010 ‡a 68025643
019 ‡a173077178 ‡a223299702
020 ‡a9780677015057
020 ‡a0677015054
035 ‡asdr-pur.99134705660001081
035 ‡asdr-miu.990053328350106381
035 ‡a(OCoLC)10573
040 ‡aDLC ‡beng ‡cDLC ‡dUKM ‡dOCLCQ ‡dMUQ ‡dAU@ ‡dUBA ‡dNIALS ‡dYDXCP ‡dBAKER ‡dDEBBG ‡dZWZ ‡dOCLCQ ‡dOCLCO ‡dBDX ‡dOCLCF
049 ‡aIPL1
050 0 0 ‡aQA320 ‡b.S33
082 0 0 ‡a517/.5
092 ‡a517.5 ‡bSch948n
100 1 ‡aSchwartz, Jacob T.
245 1 0 ‡aNonlinear functional analysis ‡c[by] J.T. Schwartz. Notes by H. Fattorini, R. Nirenberg, and H. Porta. With an additional chapter by Hermann Karcher.
260 ‡aNew York, ‡bGordon and Breach ‡c[1969]
300 ‡avii, 236 p. ‡c24 cm.
490 0 ‡aNotes on mathematics and its applications
504 ‡aIncludes bibliographical references.
538 ‡aMode of access: Internet.
650 4 ‡aanalyse fonctionnelle non linéaire.
650 4 ‡asphère géodésique.
650 4 ‡asphère topologique.
650 4 ‡athéorie Morse.
650 4 ‡acalcul variation.
650 0 ‡aNonlinear functional analysis.
776 0 8 ‡iOnline version: ‡aSchwartz, Jacob T. ‡tNonlinear functional analysis. ‡dNew York, Gordon and Breach [1969] ‡w(OCoLC)777199715
CID ‡a000620084
DAT 0 ‡a20131126092950.6 ‡b20240626000000.0
DAT 1 ‡a20240627071646.0 ‡b2024-06-27T15:16:42Z
DAT 2 ‡a2023-03-27T17:30:02Z
CAT ‡aSDR-PUR ‡cpur ‡dALMA ‡lprepare.pl-004-008
FMT ‡aBK
HOL ‡0sdr-pur.99134705660001081 ‡apur1 ‡bSDR ‡cPUR ‡ppur1.32754003614918 ‡sPUR ‡199134705660001081
974 ‡bPUR ‡cPUR ‡d20240627 ‡sgoogle ‡upur1.32754003614918 ‡y1969 ‡ric ‡qbib ‡tUS bib date1 >= 1929
974 ‡bMIU ‡cUMBUS ‡d20241123 ‡sgoogle ‡umdp.35128001336724 ‡y1969 ‡ric ‡qbib ‡tUS bib date1 >= 1929